Acero

Revisión del 11:12 6 ago 2021 de imported>Juan beltran (→‎Artículos Relacionados)
(difs.) ← Revisión anterior | Revisión actual (difs.) | Revisión siguiente → (difs.)

Definición

cat: acer m; eng: steel

Descripción Ampliada

Se denomina Acero a aquellos productos ferrosos cuyo porcentaje de Carbono está comprendido entre 0,05 y 1,7 %.

El Acero es uno de los materiales de fabricación y construcción más versátil y adaptable. Ampliamente usado y a un precio relativamente bajo, el Acero combina la resistencia y la trabajabilidad, lo que se presta a fabricaciones diversas. Asimismo sus propiedades pueden ser manejadas de acuerdo a las necesidades especificas mediante tratamientos con calor, trabajo mecánico, o mediante aleaciones.

El Acero funde entre 1400 y 1500ºC pudiéndose moldear más fácilmente que el Hierro.

Resulta más resistente que el Hierro pero es más propenso a la corrosión. Posee la cualidad de ser maleable, mientras que el hierro es rígido.

Historia

Los primeros utensilios de hierro descubiertos por los arqueólogos en Egipto datan del año 3.000 a.C., y se sabe que antes de esa época se empleaban adornos de hierro. Los griegos ya conocían hacia el 1.000 a.C. la técnica, de cierta complejidad, para endurecer armas de hierro mediante tratamiento térmico.

Las aleaciones producidas por los primeros artesanos del hierro se clasificarían en la actualidad como hierro forjado. Para producir esas aleaciones se calentaba una masa de mineral de hierro y carbón vegetal en un horno o forja con tiro forzado. Ese tratamiento reducía el mineral a una masa esponjosa de hierro metálico llena de una escoria formada por impurezas metálicas y cenizas de carbón vegetal. Esta esponja de hierro se retiraba mientras permanecía incandescente y se golpeaba con pesados martillos para expulsar la escoria y soldar y consolidar el hierro.

Después del siglo XIV se aumentó el tamaño de los hornos utilizados para la fundición y se incrementó el tiro para forzar el paso de los gases de combustión por la carga o mezcla de materias primas. En estos hornos de mayor tamaño el mineral de hierro de la parte superior del horno se reducía a hierro metálico y a continuación absorbía más carbono como resultado de los gases que lo atravesaban. El producto de estos hornos era el llamado arrabio, una aleación que funde a una temperatura menor que el acero o el hierro forjado. El arrabio se refinaba después para fabricar acero.

El proceso de refinado del arrabio mediante chorros de aire se debe al inventor británico Henry Bessemer, que en 1855 desarrolló el horno o convertidor que lleva su nombre. Desde la década de 1960 funcionan varios minihornos que emplean electricidad para producir acero a partir de chatarra. Sin embargo, las grandes instalaciones de altos hornos continúan siendo esenciales para producir acero a partir de mineral de hierro.

Fabricación del Acero

Su fabricación comienza con la reducción de hierro (producción de arrabio) el cual se convierte más tarde en Acero.

Los materiales básicos utilizados son Mineral de Hierro, Coque y Caliza. El coque se quema como combustible para calentar el horno, y al arder libera monóxido de carbono, que se combina con los óxidos de hierro del mineral y los reduce a hierro.

La ecuación de la reacción química fundamental de un alto horno es:

Fe2O3 + 3 CO => 3 CO2 + 2 Fe

La caliza de la carga del horno se emplea como fuente adicional de monóxido de carbono y como sustancia fundente. Este material se combina con la sílice presente en el mineral (que no se funde a las temperaturas del horno) para formar silicato de calcio, de menor punto de fusión. Sin la caliza se formaría silicato de hierro, con lo que se perdería hierro metálico. El silicato de calcio y otras impurezas forman una escoria que flota sobre el metal fundido en la parte inferior del horno.

El arrabio producido en los altos hornos tiene la siguiente composición:

  • 92% de hierro
  • 3 o 4% de carbono
  • 0,5 a 3% de silicio
  • 0,25% al 2,5% de manganeso
  • 0,04 al 2% de fósforo
  • Algunas partículas de azufre

El Alto Horno es virtualmente una planta química que reduce continuamente el hierro del mineral. Químicamente desprende el oxígeno del óxido de hierro existente en el mineral para liberar el hierro. Está formado por una cápsula cilíndrica de acero forrada con un material no metálico y resistente al calor, como ladrillos refractarios y placas refrigerantes. La parte inferior del horno está dotada de varias aberturas tubulares llamadas toberas, por donde se fuerza el paso del aire. La parte superior del horno, contiene respiraderos para los gases de escape, y un par de tolvas redondas, por las que se introduce la carga en el horno. Los materiales se llevan hasta las tolvas en pequeñas vagonetas o cucharas que se suben por un elevador inclinado situado en el exterior del horno.

Las materias primas se cargan (o se vacían) en la parte superior del horno. El aire, que ha sido precalentado hasta los 1.030ºC aproximadamente, es forzado dentro de la base del horno para quemar el coque. El coque en combustión genera el intenso calor requerido para fundir el mineral y produce los gases necesarios para separar el hierro del mineral.

Los altos hornos funcionan de forma continua.

Esencialmente, el CO gaseoso a altas temperaturas tiene una mayor atracción por el oxígeno presente en el mineral de hierro (Fe2O3) que el hierro mismo, de modo que reaccionará con él para liberarlo. Químicamente entonces, el hierro se ha reducido en el mineral. Mientras tanto, a alta temperatura, la piedra caliza fundida se convierte en cal, la cual se combina con el azufre y otras impurezas. Esto forma una escoria que flota encima del hierro derretido.

  • Presurización de los hornos:

Estrangulando el flujo de gas de los respiraderos del horno es posible aumentar la presión del interior del horno hasta 1,7 atmósferas o más. Esta técnica, llamada presurización, permite una mejor combustión del coque y una mayor producción de hierro. En muchos altos hornos puede lograrse un aumento de la producción de un 25%.

Cada cinco o seis horas, se cuelan desde la parte interior del horno hacia una olla de colada o a un carro de metal caliente, entre 150 a 375 toneladas de arrabio. A continuación, el contenedor lleno de arrabio se transporta a la fábrica siderúrgica (Acería).

  • Refinación del Arrabio:

El arrabio recién producido contiene demasiado carbono y demasiadas impurezas para ser provechoso. Debe ser refinado, porque esencialmente, el acero es hierro altamente refinado que contiene menos de un 2% de carbono.

En el alto horno, el oxígeno fue removido del mineral por la acción del CO (monóxido de carbono) gaseoso, el cual se combinó con los átomos de oxígeno en el mineral para terminar como CO2 gaseoso (dióxido de carbono). Ahora, el oxígeno se empleará para remover el exceso de carbono del arrabio. A alta temperatura, los átomos de carbono (C) disueltos en el hierro fundido se combinan con el oxígeno para producir monóxido de carbono gaseoso y de este modo remover el carbono mediante el proceso de oxidación.

Clasificación del Acero

  • Acero al Carbono:

Los aceros al carbono forman más del 90% de todos los aceros. Contienen diversas cantidades de carbono y menos del 1,65% de manganeso, el 0,60% de silicio y el 0,60% de cobre. Entre los productos fabricados con aceros al carbono encontramos la mayor parte de las estructuras de construcción de acero.

  • Acero Aleado:

Estos aceros contienen un proporción determinada de vanadio, molibdeno y otros elementos, además de cantidades mayores de manganeso, silicio y cobre que los aceros al carbono normales.

  • Acero de Baja Aleación Ultrarresistente:

Los aceros de baja aleación son más baratos que los aceros aleados convencionales ya que contienen cantidades menores de los costosos elementos de aleación. Sin embargo, reciben un tratamiento especial que les da una resistencia mucho mayor que la del acero al carbono. En la actualidad se construyen muchos edificios con estructuras de aceros de baja aleación. Las vigas pueden ser más delgadas sin disminuir su resistencia, logrando un mayor espacio interior en los edificios.

Aleaciones

El Acero ofrece diferentes resultados en función de la presencia o ausencia de otros metales: la adición de manganeso le confiere una mayor resistencia frente al impacto, el tungsteno, le permite soportar temperaturas más altas. Los aceros aleados no sólo mejoran las propiedades físicas, sino que también permiten una mayor amplitud en el proceso de tratamiento térmico.

Los efectos de la aleación son:

  • Mayor resistencia y dureza
  • Mayor resistencia al impacto
  • Mayor resistencia al desgaste
  • Mayor resistencia a la corrosión
  • Mayor resistencia a altas temperaturas
  • Penetración de temple (Aumento de la profundidad a la cual el Acero puede ser endurecido)

Ver :Propiedades del acero aleado.

Artículos Relacionados

Enlaces Externos